Table 1. Summary Evaluation of BDCP Conservation Element Bundles by Covered Fish Species ## Effects Categories B-L● = low beneficial effects at population level A-L○ = low adverse effect at population level □ C-L = low level of certainty regarding assessment of bundle outcomes □ C-M = moderate level of certainty regarding assessment of bundle outcomes □ C-M = moderate level of certainty regarding assessment of bundle outcomes □ C-H = high level of certainty regarding assessment of bundle outcomes □ C-H = high level of certainty regarding assessment of bundle outcomes □ C-H = high level of certainty regarding assessment of bundle outcomes □ C-H = high level of certainty regarding assessment of bundle outcomes □ C-H = high level of certainty regarding assessment of bundle outcomes | Conservation Element
Bundles | COVERED FISH SPECIES | | | | | | | | | | |------------------------------------|--|---|---|--|--|--|--|--|--|--| | | Smelt | Sturgeon | Salmonids | Sacramento Splittail | | | | | | | | | Effect Certainty | Effect Certainty | Effect Certainty | Effect Certainty | | | | | | | | Water Operations and Con | veyance Bundles | | | | | | | | | | | 1. Real-time operation of CVP/SWP | B-L ● | NE □□□ C-H | B-L ● □□□ C-H | B-L ● □□□ C-H | | | | | | | | | Low benefit associated with reduction in entrainment loss | Negligible benefit associated with
reduction in entrainment loss, but because
relatively few sturgeon are entrained, the
level of population benefit would be
minimal | Low benefit to more common salmonids; moderate benefit to less common salmonids associated with reduction in entrainment loss; Benefits depend in part on frequency, magnitude, and duration of export reductions | Low benefit associated with reduction in
entrainment loss in most years | | | | | | | | 2. Reduced demand/Delta diversions | B-M ●● □□ C-M | NE □ C-L | В-М ●● □□□ С-Н | В-М ●● □□□ С-Н | | | | | | | | | Potential beneficial effects associated with reduced mortality from entrainment, improvements to water quality and flow conditions, increased food availability and quality, and improved ecosystem processes Benefits are dependent on the amount of reduction | Largely unknown, but probably minimally positive | Low benefits from improved water quality and flow conditions Moderate benefit to less common salmonids associated with reduction in entrainment loss; low benefit to more common salmonids Benefits are dependent on magnitude and seasonal timing of reduction | Benefits through increased water quantity
and quality, but minimized by high
tolerance to environmental conditions | | | | | | | | Conservation Element
Bundles | COVERED FISH SPECIES | | | | | | | | | | | |---------------------------------|--|--|--|---|--|--|---|---|--|--|--| | | Si | melt | | Sturgeon | | Salmonids | Sacramento Splittail | | | | | | | Effect | Certainty | Effect | Certainty | Effect | Certainty | Effect | Certainty | | | | | 3. Opportunistic exports | B-L • | $\Box\Box$ C-M ated with reduction in | B-M • • | $\Box\Box$ C-M ssociated with reduction in | | □□ C-M nefit to less common | | $\Box\Box$ C-M it from reduction in | | | | | | entrainment loss, leading the loss of los | nydrologic conditions,
d availability, food
cosystem processes
t associated with
v of non-native | entrainment lo
native predato
• Low to moder
altering flows | oss and reduction in non-
ors
rate benefit associated with
to mimic historic hydrologic
d improved spawning habitat | salmonids as entrainment of common salm. • Moderate being improved had entrainly his upstream flow improved was and ecosystem food supply, exporting occ. • Relative benefall-run than to interaction. | sociated with reduction in loss; low benefit to more monids nefits associated with bitat quantity igh benefit associated with w modifications causing ater quality, flow conditions, m processes, and increased but depends on time of year | entrainmer water quali competitor Moderate t increased s habitat qua | at from reduction in the mortality and improved ity, and reduced non-native is and predators benefit associated with pawning and juvenile rearing ality and quantity, increase ability, and ecosystem | | | | | 4. SDA facility | В-М ●● | □□ C-M | A-L O | □ C-L | B-M ●● | □□ С-Н | B-M ●● | □□□ С-Н | | | | | | reduced entrainment availability of habitin non-native command improved eccions. Moderate benefit a improved hydrody. Long period requirelative to species. Benefits are dependent conditions, hydraus. | red to implement needs dent on the hydrologic lic residence time, time of year, location, | improved flow spawning and reduction in n • Potentially low | effect associated with v conditions, accessibility to juvenile rearing habitat, and on-native predators v to moderate adverse effect h false attraction flows | increased ent (performance unknown), by population Moderate ber non-native co increased foo availability High benefit flow modifica flows causing rearing habita | rerse effect associated with crainment from two intakes e of a new fish screen is ut low effect on overall mefit associated with reduced empetitors/predators and ed quality, quantity, and associated with upstream ations and more natural g improved water quality, at, and ecosystem processes igh adverse effect associated raction flows | entrainmer but low effe • Moderate t improved v conditions, food availa competitor ecosystem • Improved of | conditions not expected in a because low salinity must be | | | | | Conservation Element
Bundles | COVERED FISH SPECIES | | | | | | | | | | | |---------------------------------|---|--|--|--|-----|---|---|-----|--|--|--| | | | Smelt | Sturge | | | Salmo | | | | mento Splittail | | | | Effect | Certainty | Effect | Certainty | Eff | ect | Certainty | Eff | ect | | Certainty | | 5. Isolated facility | High benefit ass
elimination of en
improvements t
conditions, increand increased ed | sociated with improved r, quality, and availability ociated with virtual ntrainment losses, to hydrodynamic eased food availability, cosystem processes uired to implement | B-M • • Low benefit associated loss and reduction in reduction in reduction. Moderate benefits associated associated properties associated and juvenile rearing heart and quality. | non-native predators ociated with access to spawning | | Low benefit associatentrainment mortali
High benefit associa | ty ted with improved conditions, increased of habitat and increased quantity, ility of food, and | • | Low benefit as
entrainment m
Moderate bene
non-native con
High benefit a
water quality a
increased habi | efit associated winpetitors and prossociated with in and flow condition tat and food quancessibility, and | ith reduced
edators
nproved
ons,
lity, | | 6. Bifurcated SDA facility | hydrologic cond
diversity, compl
availability • High benefits as
food availability
processes | c-L sociated with improved litions, increased habitat lexity, quality, and sociated with increased and improved ecosystem uired to implement es needs | Low to moderate beneassociated with reduce improved flow condit access to spawning an habitat, and reduction predators Potentially low advers with false attraction flows | ed mortality,
ions to improve
d juvenile rearing
in non-native
se effect associated | • | Low benefit associate entrainment mortalism. Moderate benefits a reductions of non-nacompetitors/predat. High benefits associated water quality and flequality and quantity habitat and migratic increased food quality availability, and improcesses | ssociated with ative ors ated with improved ow conditions, higher of juvenile rearing on corridors, ity, quantity, and proved ecosystem | • | Low adverse eincreased entra
Low benefit as
non-native con
Moderate bene
with improved
High beneficia
increased habi | effect associated vainment from two ssociated with recompetitors and properticial impact associated water quality all effects associated and food quality and evailability, evailability. | ro intakes duction in edators sociated ed with lity, | | 7. Dual conveyance facility | Low benefit asso
water quality are
increased habita Moderate impro-
availability and Potentially high | ecosystem processes
adverse effect from not
ted within a time frame | A-L ○ Low benefit associated entrainment mortality use of IF vs. South Dereduction in non-native. Low to moderate benefit high fluctuating hydroimproved access to sprearing habitat, reduce food supply. Dredging would cause water quality. | ta facilities, and repredators effect associated plogic conditions, awning and juvenile ed water quality and | • | Low benefit associate entrainment mortalice Moderate benefits as increased food qualicavailability, reduction competitors and prefits) High benefits associate water quality and floincreased quality and habitat and migration | ty ssociated with ity, quantity, and ons in non-native edators (but less than ated with improved | • | Low benefit as
mortality from
native mortali
Low adverse e
reduced flow or
residence time
quantity
Moderate benefit | esociated with reconstruction entrainment and the entrainment and the effect associated with as a second control of the effect associated with the effect as a second control of sec | d non- ter quality with vater ced food | | Conservation Element
Bundles | COVERED FISH SPECIES | | | | | | | | | | | | |--|---|---|--|--|-------|---|---|---|---|---------------|--|--| | | | Smelt | | Sturgeon | | Salmo | nids | Sacramento Splittail | | | | | | | Effect | Certainty | Effect | Certaint | y Eff | fect | Certainty | Eff | ect (| Certainty | | | | 8. SJR corridor isolated | A-L O | □□ C-M | U | □ C- | L B-I | L • | □□□ С-Н | NE | | □□ C-H | | | | Low adverse effect associated with increased entrainment, reduced hydrologic residence times, and reduced ecosystem processes Low benefit associated with food availability Potentially high adverse effect from not being implemented within a time frame | | | Not enough known about sturgeon to
evaluate effects, but possible increase in
entrainment and decrease in habitat quality
and food quantity | | | Low benefit associated with increased food quantity and improve conditions for salmonids emigrating from San Joaquin River system | | | Low adverse effects associated with reduced habitat quality and food production from reduced water residence time Low benefit associated with reduced mortality from entrainment Moderate benefit associated with increased food supply | | | | | Entrainment and Predation | needed for the | * | | | | | | | | | | | | 9. Minimize SWP/CVP mortality | NE NE | □□ С-М | U | □ C- | L NE | Ξ | □□□ С-Н | NE | | □□ С-Н | | | | | Low benefit associated with reduced mortality from entrainment | | Not enough known about sturgeon to
evaluate effects, but possible decrease in | | | Low benefit from renon-natives in CCF | duced predation by | Low benefit associated with reduced
mortality from entrainment | | | | | | | | ffect associated with lity of non-natives | entrainm | ent | • | Low adverse effect a reduction in non-na | | | Low adverse effect of reduced mo of non-natives | ortality | | | | 10. Minimize non-
SWP/CVP entrainment | B-L ● | □□ C-M | B-L ● | □□ C-N | 1 NE | | □□□ С-Н | NE | | □□ С-Н | | | | | mortality from food quality an improved ecos • Moderate bene improved hydrometric mortality from food and food improved hydrometric mortality from food food food food food food food fo | entrainment, increased and availability, and ystem processes efit associated with rodynamic conditions and f diversions are removed | VIOLENCE VI | efit associated with reduced r from entrainment | • | Likely minimal benereduced entrainment
Low adverse effect of
of non-native predat | t
of reduced mortality | • | Low benefit associated with redu-
mortality from entrainment
Low adverse effect of reduced mo
of non-native predators/competit | ortality | | | | | Antonia | ffect associated with ative mortality from | | | | | | | | | | | | 11. Improve habitat to reduce predation | B-L ● | □ C-L | U | □ C- | L B-1 | L • | □□ С-М | B-N | M ●● | □□ С-Н | | | | | mortality from | sociated with reduced predation by non-natives, and hydrologic conditions | evaluate | igh known about sturgeon to effects, but possible marginal y reducing predator abundance | • | Low benefit associate predation by non-nate quantity and quality amount of improver | ntives, higher habitat
v, but dependent on | • | Marginal benefit associated with increased shallow water habitat Moderate beneficial effect associa reduced predation | | | | | Conservation Element
Bundles | COVERED FISH SPECIES | | | | | | | | | | |--|--|---|--|--|--|--|--|--|--|--| | | Smelt | Sturgeon | Salmonids | Sacramento Splittail | | | | | | | | | Effect Certa | ainty Effect Certaint | y Effect Certainty | Effect Certainty | | | | | | | | 12. Isolate gravel pits | NE □□□ | C-H NE | H B-L ● □□ C-M | B-L ● □□□ C-H | | | | | | | | | Outside of species habitat | Ongoing sampling indicates captured
gravel pits are not a stressor on green or
white sturgeon | Low benefits associated with reduced predation by non-natives Benefits will be greatest on San Joaquin, where majority of gravel pits are located | Low benefit associated with reduced
predation by non-natives and marginal
increase in shallow habitat | | | | | | | | 13. Install screens on upstream diversions | NE □□□ | C-H NE | M NE □□ C-M | NE □□□ C-H | | | | | | | | | Outside of species habitat | Negligible benefit associated with reduced entrainment loss | Negligible benefit associated with
reduced entrainment loss, but expected
to be minimal | Positive effects of reduced entrainment
would be cancelled out by adverse effects
of reduced entrainment of predators and
competitors | | | | | | | | Flow-Related Habitat Impr | ovement Bundles | | | | | | | | | | | 14. Operate DCC to improve passage | NE \Box | C-M NE | M NE | B-L ● □□□ C-H | | | | | | | | | e e | Marginal benefit associated with reduced non-native predator habitat, but expected to be negligible DCC gates are currently open during juvenile outmigration period, so no additional benefit Gates are already operated to minimize outmigrating salmonid mortality; therefore, effects are minimal | | | | | | | | | | 15. Open DCC & install screens at DCC & Georgiana Slough | NE □□ | C-M A-L O | M B-M ● ● □□ C-M | A-L ○ □□□ C-H | | | | | | | | | Potential marginal benefit associated verbuced non-native predator habitat | Low to moderate adverse effects associated with reduced access to food and habitat in the interior Delta | | Low adverse effects associated with reduced water quality, flow conditions and increased toxics Negligible adverse effect associated with reduced access to food in interior Delta | | | | | | | | 16. Re-operate upstream storage facilities | NE 🗆 | C-M B-M ●● □□ C-N | M B-M ● ● □□ C-M | В-Н ●●● | | | | | | | | | Outside of species habitat | Moderate positive effect associated with increased water quality, creation of attraction flows, barrier passage flow, and improved habitat quality and quantity | Moderate benefit associated with increased water quality and flow conditions, increased habitat quantity, and ecosystem processes Potentially low to moderate benefit associated with increased food quality and reduced non-native species | Low positive effects associated with increased food quality and quantity and reduction of non-native competitors and predators Moderate positive effects associated with increase water quality and flow conditions High positive effects associated with increased accessibility to spawning habitat and improved ecosystem processes | | | | | | | | Conservation Element
Bundles | | | COVERED FI | SH SPECIES | | | | | |---|---|------------------------|--|---|--|---|--|--| | | Smelt | | Sturgeon | Salmonids | Sacra | mento Splittail | | | | | Effect Certa | inty Effect | Certainty | Effect | Certainty | Effect | Certainty | | | 17. Improve and create bypass and floodway habitat | NE 🗆 🗆 | С-М В-М ●● | □□ С-М | В-М ●● | □□□ С-Н | В-Н ●●● | □□□ С-Н | | | | Outside of species habitat | reduc
impr
avail | to moderate benefits associated with ctions in non-natural mortality, oved water quality, improved ability of habitat, and improved food ty and quantity | reduced abo
competitors
habitat qua | venefits associated with
undance of non-natives
is and predators, increased
ntity, increased food quality
ty, and improved ecosystem | habitat quality | nssociated with food and
, quantity, and
nd improved ecosystem | | | Physical Habitat Restoration | on Bundles | <u> </u> | | | | • | | | | 18. Restore habitat in the north, east, and west Delta | B-H ●●● | C-L B-H ●● | □□ С-М | B-L ● | □□ С-М | В-Н ●●● | □□□ С-Н | | | Low benefit associated with improved water quality and hydrologic conditions High benefit associated with improved habitat quality, availability, and complexity, and ecosystem processes Potential high benefit associated with increased food availability, but largely unknown | | ns incre
avail | Moderate to high benefits associated with increased quantity, quality, quantity, and availability of habitat and food | | ts from reduced mortality
atives, increased food
nproved habitat quality and
nd improved ecosystem | Low benefits associated with reductions of non-natives Moderate benefits associated with improved water quality High benefits associated with increased quality, quantity, and accessibility in habitat and food and improved ecosyster processes | | | | 19. Restore habitat in the central Delta | В-Н ●●● | C-L B-M ●● | □□ С-М | B-L ● | □□ С-М | B-M ●● | □□□ С-Н | | | | Similar to but lower benefits than #18 #21 because central Delta has lower va to smelt than north Delta and Suisun Marsh, but greater than #20 because central Delta has higher value to smelt than south Delta | llue incre
avail | erate to high benefits associated with
ased quantity, quality, quantity, and
ability of habitat and food | | nilar to #18, but lower because
onids pass through central | | ower benefits than #18
or area and less desirable
ttail | | | 20. Restore habitat in the south Delta | B-M ● ● | C-L B-L ● | □ C-L | B-L ● | □□ С-М | B-M ● ● | □□□ С-Н | | | | • Similar to but lower benefits than #18, #19, #21 because south Delta has lowe value to smelt than north Delta, centra Delta, and Suisun Marsh | r becau | ar to but lower benefits than #18 & 19 use sturgeon enter Delta from the | | nilar to #18, but lower because
ead and fall-run salmonids are
uin River | | ower benefits than #18
or area and less desirable
ttail | | | Conservation Element
Bundles | COVERED FISH SPECIES | | | | | | | | | |---------------------------------------|----------------------------|--|---|---|---|---|---|---|--| | | | Smelt | | Sturgeon | A | Salmonids | ! | Sacramento Splittail | | | | Effect | Certainty | Effect | Certainty | Effect | Certainty | Effect | Certainty | | | 21. Restore Suisun Marsh habitat | B-H ● ● | □ C-L | B-L ● | □ C-L | B-L ● | □□□ С-Н | B-H ● ● | □□ С-М | | | | #19 & #21 becau | to #18, but greater than
use Suisun Marsh has
smelt than south and | water quality, | ssociated with improved flow conditions and tat availability, increased ty | from no quantity | nefits from reduced mortality
on-natives, increased food
y, improved habitat quality and
y, and improved ecosystem
es | reduced in predators Moderate reduced in and flow High bein habitat questions | eficial effects associated with non-native competitors and see benefits associated with mortality, increase water quality conditions aefit associated with increased uantity, quality, and availability iles and adults | | | 22. Restore habitat upstream of Delta | NE | □□ С-М | В-М●● | □□ С-М | В-Н ●●● | □□□ С-Н | B-H ●● | □□□ С-Н | | | | Outside of species habitat | | improved wateModerate bene improved acce | ate benefits associated with er quality, efits associated with ess to and quantity of itat, increased food supply | mortalit
improvi
increase
accessib | enefits associated with reduced
ty from non-native predators,
ing hydrologic conditions,
ed quantity, quality, and
bility of habitat, increased food
improved ecological processes | | nefits specifically from floodplain
on (similar to #17) | |